
ce

RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 64, 010902~R!

106
Estimating Lyapunov exponents in biomedical time series
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Among nonlinear dynamical invariants, determination of the largest Lyapunov exponent is well suited to
positive identification of chaos in observed time series. When analyzing the dynamics of biomedical series,
such as an electro-encephalogram~EEG!, model-based methods should be used. Moreover, in the absence of
any well founded theoretical model, and because of unexplained variability in the data, candidate models must
provide for a stochastic component. Here we use nonlinear autoregressive stochastic modeling to estimate the
dominant Lyapunov exponent in an EEG series and compute confidence intervals from surrogate data. The
results are found to differ from those of approaches which aim at deleting noise prior to analysis.
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I. INTRODUCTION

Originally, chaos and dynamical invariants~e.g., dimen-
sion parameters and Lyapunov exponents! were defined in
the context of purely deterministic systems. This point
view will be adequate for the analysis of data from we
controlled physical or chemical experiments. However, wh
considering biomedical series, the analyst should introdu
noise component in the model because of unexplained v
ability in the data and unavoidable model misspecificati
Indeed, controversies about the chaotic nature of biomed
series, such as epidemics or electro-encephalogram~EEG!
recordings might be, at least in part, due to inadequate
counting for noise~e.g., Ref.@1#!.

Results from EEG analysis offer a particularly clear illu
tration of the controversies arising from nonlinear analysis
noisy biomedical series: whether the irregular pattern of r
tine scalp EEG recordings is best explained as arising f
deterministic nonlinear chaotic dynamics or from stocha
fluctuations is still a matter of debate@2#. Some authors have
provided evidence for low dimensional chaos@3–5#. How-
ever, this conclusion has been challenged, because o
poor reliability of parameter estimates from experimental
ries, insofar as positive identification of chaos is concern
@6–8#. Presently, modeling the EEG as a nonlinear stocha
system with additive noise is often preferred@9–13#.

The above issues should obviously be solved before
attempts to compare nonlinear invariants between group
subjects. For instance, it has been reported that correla
dimension is lower in schizophrenic versus normal subje
@14#. While the conclusion is that there are differences in
EEGs of the two groups, the interpretation of the differen
is unclear@15,16#. In effect, estimation@15,17–19# and in-
terpretation@6,2,7# of dimension parameters in noisy series
far from straightforward because the attractor is blurred
noise.
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Estimation of the largest Lyapunov exponent is compu
tionally more demanding@20#, but estimates of this param
eter are more readily interpreted with respect to the prese
of chaos, as positive Lyapunov exponents are the hallmar
chaos @21#. Some authors have expressed doubts as
whether Lyapunov exponents could be defined for a rand
series~see, e.g., Ref.@20#!. However, the multiplicative er-
godic theorem of Oseledecˇ @22# provides a clear answer in
the affirmative, as was explicated by Arnold@23,24# within
the formalism of random dynamical systems. Because th
results seem to have been overlooked, most authors h
treated noise as a nuisance phenomenon, to be elimin
prior to computing Lyapunov exponents. Several approac
such as filtering, computation along noise-free trajectories
along averaged trajectories have been considered in ord
‘‘eliminate’’ noise @25#. In the presence of dynamic~system!
noise, however, Lyapunov exponents should be compu
along the actual~noisy! sample path. They may be inte
preted as quantifying the rate of divergence of initia
nearby trajectories, subject to the constraint of identical
quences of random shocks@16#.

Here we investigate EEG dynamics by computi
Lyapunov exponents of the random dynamical system al
the actual sample path and show that conclusions der
from these parameters differ markedly from those deriv
with the noise deleted. Furthermore, although Lyapunov
ponents are statistical dynamical invariants which are in
pendent of the observed motion along trajectories, val
estimated from finite amounts of data will be random qua
tities. Thus, to draw any reliable conclusion from the estim
tion of Lyapunov exponents as to the presence of chaos,
must quantify the variability of the estimates. This is be
done in the form of confidence intervals, which can be e
mated via bootstrapping, an approach akin to hypothesis
ing using surrogate data@26#.

II. LYAPUNOV EXPONENTS IN NOISY TIME SERIES

Assume that scalar observationsx1 , . . . ,xn , . . . are
made at regular time intervals on some biomedical proc
for which, motivated by Takens’ theorem@27#, we postulate
©2001 The American Physical Society02-1
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the following autoregressive model:

xn5 f ~xn21 , . . . ,xn2p!1en , n.p, ~1!

wheref is a possibly nonlinear autoregressive function,en is
a white noise component with zero mean and finite varian
andp is the order of the autoregression. Note thatp is also
the embedding dimension of the process being observed

To define Lyapunov exponents we write model~1! in
p-dimensional space

Xn5F~Xn21!1En , n.p, ~2!

whereXn5(xn , . . . ,xn2p11)T, En5(en ,0, . . . ,0)T, and the
mapF is defined in obvious fashion.

In the terminology of Arnold@23#, model ~2! specifies a
one-sided discrete time random dynamical system onRp

generated by the random mapping

c~v!X5F~X!1E1 , ~3!

wherev5(E1 ,E2 , . . . ).
Furthermore, the Jacobian matrixJ5]F/]X generates a

linear cocycle

Bn~v,X0!5J~X0!J~X1! . . . J~Xn21! ~4!

on Rp @24#. Oseledecˇ’s multiplicative ergodic theorem@22#
then ensures that, under general ergodicity and integrab
conditions, the Lyapunov exponent

lim
n→`

1

n
logiBn~v,X0!ui , ~5!

where i .i is Euclidean norm inp-space anduPRp, exists
and is independent ofv andX0. Moreover, if the coordinates
of u are randomly generated from the uniform distribution
@0,1#, the above limit is independent ofu and equals the
dominant Lyapunov exponentl.

For purpose of comparison, the Lyapunov exponent

l̃5 lim
n→`

1

n
logiAn~X0!ui , ~6!

for the system with noise deleted was also considered. H
An(X0)5J(X0)J@F(X0)# . . . J@Fn21(X0)#.

III. STATISTICAL ESTIMATION

For estimating Lyapunov exponents in noisy systems,
rect methods that track small orbit differences@20# are im-
proper because, as far as the trajectories being compared
not correspond to the same sequence of random shocks
divergence between them might simply be due to the no
component. We thus resort to model based methods.

Because in the biomedical setting, one is generally una
to specify a reliable parametric model forf, the autoregres-
sive function was estimated by nonparametric regression
ing the multivariate adaptive splines of Friedman@28#. Con-
trary to classical spline estimation, the knots are adaptiv
selected from the data, resulting in a parsimonious flex
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estimation method. The procedure operates as follows.
fixed p, an approximation tof is built in the form

f̂ p,D~X!5(
j 50

D

ajF j~X!, ~7!

whereXPRp, theaj ’s are real coefficients, and theF j ’s are
D11 basis functions defined as tensor products of univar
truncated linear splines. More specifically,

F0~X!51,

F j~X!5)
k51

K j

@sj ,k~xn( j ,k)2t j ,k!#1 , 1< j <D,

wheresj ,k561, the xn( j ,k) are ~distinct! components ofX,
and thet j ,k are the corresponding knot locations. TheK j ’s
are upper bounds specified by the user.

The basis functionsF j and the coefficientsaj are com-
puted stepwise by least-squares. The initial basis functio
F0. At each step, a least-squares optimization is perform
to select a parent basis functionF! ~already in the model!, a
component variablex! ~which is not among the arguments o
F!), and a knot locationt!. Two daughter basis function
F!(X)(x!2t!)1 andF!(X)(t!2x!)1 are then added to the
model.

Optimal valuesp̂ and D̂ for p and D, are selected by
minimization of a penalized least-squares criterion@29#.

Jacobian matricesJ were estimated fromf̂ p̂,D̂ by numeri-
cal differentiation. The 95% confidence intervals forl andl̃
were estimated by parametric bootstrap, based on 400 su
gate realizations. The surrogate data were generated
f̂ p̂,D̂ and additive Gaussian noise, with mean zero and v
ance equal to

ŝ«
25

1

n (
i 5 p̂11

n

@xi2 f̂ p̂,D̂~xi 21 , . . .xi 2 p̂!#2. ~8!

IV. EEG ANALYSIS

We analyzed 18 EEG recordings obtained from
asymptomatic female students aged 19–22 years. The E
data were acquired from nine scalp loci with InstEP softw
~Canada version 3.1! during 3 min periods, under the eye
closed condition. The sampling rate was 250 Hz. The an
sis was performed on stationary 20 s segments that w
selected by eye from the central parietal derivation.

Table I presents estimates ofl and 95% bootstrap confi
dence intervals. The estimates are significantly positive, s
gesting the existence of chaos, in 13 out of 18 subjects.
timates of l̃ and corresponding 95% bootstrap confiden
intervals are given in Table II. These estimates, correspo
ing to the noise free system, are seen to be all nonsig
cantly different from zero at the 5% level.
2-2
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V. DISCUSSION

Here, we analyzed EEG dynamics using a nonlinear
toregressive stochastic model, which was estimated from
data. The model is comprised of a deterministic autoreg
sive function and an additive noise component. This str
ture, however, should not be interpreted in the light of de
~stochastic! projection and~deterministic! dilation theorems
established in the context of well understood physi
chemical processes@30#. Rather, the noise component
merely a convenient modeling tool, which accounts for u
explained variability in the data and model misspecificati
In this sense, stochastic modeling is equivalent to infin
dimensional deterministic modeling@1#.

We found that, in biomedical series such as EEG reco
ings, computing Lyapunov exponents with noise deleted m

TABLE I. Estimates and 95% bootstrap confidence intervals
Lyapunov exponents (l) for 18 subjects. Units are s21.

Subject l Confidence interval

1 6.45 2.48, 11.37

2 20.78 20.79, 9.32

3 4.73 1.15, 8.32

4 5.45 0.03, 6.74

5 20.68 21.09, 5.48

6 3.45 1.57, 8.42

7 1.83 23.12, 7.11

8 2.70 0.47, 7.37

9 0.11 22.43, 4.44

10 0.95 0.19, 4.03

11 0.47 0.02, 2.60

12 1.39 1.35, 9.54

13 6.95 1.98, 10.16

14 1.79 0.16, 7.79

15 2.43 0.11, 6.75

16 5.00 0.95, 8.99

17 4.05 0.83, 8.12

18 3.95 20.95, 7.00
l-
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lead to erroneous conclusions. Moreover, the estimation
confidence intervals was critical to avoid erroneous conc
sions about the dynamics of the system. Indeed, the est
tion of confidence intervals is analogous to hypothesis te
based on surrogate data advocated by Theileret al. @26#.
More specifically, our confidence interval construction m
be understood as corresponding to a test of the null hyp
esis of nonchaotic dynamics using surrogate data gener
by the full model, whereas Theileret al. @26# generate the
surrogates from null models.
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f TABLE II. Estimates and 95% bootstrap confidence intervals

Lyapunov exponents corresponding to the noise free system (l̃) for
18 subjects. Units are s21.

Subject l̃

1 2.80 24.28, 16.19

2 26.80 29.22, 13.86

3 0.49 22.79, 10.27

4 10.18 21.90, 13.71

5 23.08 23.42, 7.25

6 20.62 22.70, 10.01

7 2.08 28.18, 11.95

8 21.84 22.96, 6.54

9 0.39 26.04, 6.93

10 20.19 22.19, 3.95

11 0.35 21.89, 1.77

12 2.16 24.11, 11.86

13 7.78 21.65, 12.27

14 1.14 23.25, 9.82

15 9.23 23.97, 10.50

16 0.36 24.34, 10.26

17 1.45 22.31, 14.16

18 23.60 24.89, 8.83
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